ASSESSING THE PERFORMANCE OF LEJA AND CLENSHAW-CURTIS COLLOCATION FOR COMPUTATIONAL ELECTROMAGNETICS WITH RANDOM INPUT DATA

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Comparison of Leja and Clenshaw-Curtis Dimension-Adaptive Collocation for Stochastic Parametric Electromagnetic Field Problems

We consider the problem of approximating the output of a parametric electromagnetic field model in the presence of a large number of uncertain input parameters. Given a sufficiently smooth output with respect to the input parameters, such problems are often tackled with interpolation-based approaches, such as the stochastic collocation method on tensor-product or isotropic sparse grids. Due to ...

متن کامل

Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs

In this work we compare numerically different families of nested quadrature points, i.e. the classic Clenshaw–Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that the performances of both families are essentially comparable within such framework.

متن کامل

A wavelet-collocation approach for computational electromagnetics

A wavelet-collocation scheme, constructed from the discrete singular convolution (DSC) is introduced for computational electromagnetics. The basic philosophy behind the DSC algorithm is studied. Four test problems, including waveguide analysis in both regular and irregular domains, electromagnetic wave scattering, electrostatic field estimation via potential functions, and electromagnetic wave ...

متن کامل

Stochastic Discrete Clenshaw-Curtis Quadrature

The partition function is fundamental for probabilistic graphical models—it is required for inference, parameter estimation, and model selection. Evaluating this function corresponds to discrete integration, namely a weighted sum over an exponentially large set. This task quickly becomes intractable as the dimensionality of the problem increases. We propose an approximation scheme that, for any...

متن کامل

Generalized Clenshaw-Curtis quadrature rule with application to a collocation least-squares method

This paper deals with an extension of one-dimensional Clenshaw–Curtis quadrature rule to R ; d P 2 on a convex domain. As one of its applications, we apply this quadrature rule to a collocation least-squares method using arbitrary abscissas for a first-order system of an elliptic boundary value problem so that the convergence analysis on a numerical solution can be shown in a standard Sobolev n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Uncertainty Quantification

سال: 2019

ISSN: 2152-5080

DOI: 10.1615/int.j.uncertaintyquantification.2018025234